On the shape of the probability weighting function.
نویسندگان
چکیده
Empirical studies have shown that decision makers do not usually treat probabilities linearly. Instead, people tend to overweight small probabilities and underweight large probabilities. One way to model such distortions in decision making under risk is through a probability weighting function. We present a nonparametric estimation procedure for assessing the probability weighting function and value function at the level of the individual subject. The evidence in the domain of gains supports a two-parameter weighting function, where each parameter is given a psychological interpretation: one parameter measures how the decision maker discriminates probabilities, and the other parameter measures how attractive the decision maker views gambling. These findings are consistent with a growing body of empirical and theoretical work attempting to establish a psychological rationale for the probability weighting function.
منابع مشابه
Constrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملExplaining Heterogeneity in Risk Preferences Using a Finite Mixture Model
This paper studies the effect of the space (distance) between lotteries' outcomes on risk-taking behavior and the shape of estimated utility and probability weighting functions. Previously investigated experimental data shows a significant space effect in the gain domain. As compared to low spaced lotteries, high spaced lotteries are associated with higher risk aversion for high probabilities o...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cognitive psychology
دوره 38 1 شماره
صفحات -
تاریخ انتشار 1999